The efficiency of water softeners is a measure of the salt and water used for regeneration versus the amount of hardness removed from the water. The most efficient softeners are ones that use demand initiated regeneration (DIR) thus ensuring that very little unused capacity remains on the resin before regeneration begins. The factors that influence the efficiency of the softener are equipment design, the operating scheme of the equipment, the salt percent applied to the resin, the salt dosage applied to the resin, salt contact time and the resin itself. The classic softener has enough freeboard to facilitate a sufficient backwash expansion of the bed, is designed to be regenerated with brine in a co-current fashion and is sized to accommodate normal superficial flow rates, usually around 8-12 gpm per square foot of cross-sectional area. Advanced designs may incorporate the hardware necessary to perform a counter-current regeneration. A packed bed design is also sometimes offered. These advanced designs, which borrow from proven industrial ideas, must be selected with care, especially in cases where the ability to expand the bed at least 30 to 50 percent during backwash is eliminated. The aforementioned classic softener is a very forgiving design, with the ability to backwash out suspended solids. This is particularly important when treating waters with iron, or any other waters that may have total suspended solids (TSS) ) b8 q1 {1 M5 s: v) D3 u
present. |